China Best Sales PA Series One Stage Planetary Gearboxes for Servo Motor gearbox design

Product Description

PA Series One Stage Planetary Gearboxes For Servo Motor

There are many kinds and models of reducers. According to the control accuracy, reducers can be divided into general transmission reducers and precision reducers: general transmission reducers have low control accuracy and can meet the basic power transmission requirements of general mechanical equipment; Precision reducer has high precision, long service life, small return clearance and high reliability. It is suitable for high-end fields such as industrial robots, CNC machine tools, aerospace and so on.

Product Parameters

Characteristic:

(1) Low Noise:The use of helical gear design,to achieve a smooth,quite operation of the reducer.
(2) High Precision:Backlash is 3 arcmin or less,accurate positioning.
(3) High Rigidity,High Torque:The output shaft used large size,large span double support bearing design,which improves the rigidity and torque of the reducer.
(4) High Efficiency:1-stage up to 95% or more,2-stage up to 92% or more.
(5) Maintenance-Free:Low grease wear,can be lifetime lubrication.
(6) Sealing Effect is Good:Lubricating grease with high viscosity,not easy to separate the characteristics,ip65 protection class to ensure that no grease leakage.
(7) Installation Unrestrained:Can be installed arbitrarily.
(8) Wide Applicability:Applicable to any type of servo motor.
(9) An organic [integral] whole output axis.

Specifications PA60 PA90 PA120 PA140 PA180 PA220
Technal Parameters
Max. Torque Nm 1.5times rated torque
Emergency Stop Torque Nm 2.5times rated torque
Max. Radial Load N 1530 3250 6700 9400 14500 16500
Max. Axial Load N 630 1300 3000 4700 7250 8250
Torsional Rigidity Nm/arcmin 6 12 23 47 130 205
Max.Input Speed rpm 8000 6000 6000 6000 6000 3000
Rated Input Speed rpm 4000 3000 3000 3000 3000 1500
Noise dB ≤58 ≤60 ≤65 ≤68 ≤68 ≤72
Average Life Time h 20000
Efficiency Of Full Load % L1≥95%                        L2≥90%
Return Backlash P1 L1 arcmin ≤3 ≤3 ≤3 ≤3 ≤3 ≤3
L2 arcmin ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
P2 L1 arcmin ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
L2 arcmin ≤7 ≤7 ≤7 ≤7 ≤7 ≤7
Moment Of Inertia Table L1 3 Kg*cm2 0.16 0.61 3.25 9.21 28.98 69.7
4 Kg*cm2 0.14 0.48 2.74 7.54 23.67 54.61
5 Kg*cm2 0.13 0.47 2.71 7.42 23.29 53.51
7 Kg*cm2 0.13 0.45 2.62 7.14 22.48 50.92
8 Kg*cm2 0.13 0.45 2.6 7.14 / /
10 Kg*cm2 0.13 0.4 2.57 7.03 22.51 50.18
L2 12 Kg*cm2 0.13 0.45 0.45 2.63 7.3 23.59
15 Kg*cm2 0.13 0.45 0.45 2.63 7.3 23.59
20 Kg*cm2 0.13 0.45 0.45 2.63 6.92 23.33
25 Kg*cm2 0.13 0.45 0.4 2.63 6.92 22.68
28 Kg*cm2 0.13 0.45 0.45 2.43 6.92 23.33
30 Kg*cm2 0.13 0.45 0.45 2.43 7.3 25.59
35 Kg*cm2 0.13 0.4 0.4 2.43 6.92 22.68
40 Kg*cm2 0.13 0.45 0.45 2.43 6.92 23.33
50 Kg*cm2 0.13 0.4 0.4 2.39 6.92 22.68
70 Kg*cm2 0.13 0.4 0.4 2.39 6.72 22.68
100 Kg*cm2 0.13 0.4 0.4 2.39 6.72 22.68
Technical Parameter Level Ratio   PA60 PA90 PA120 PA140 PA180 PA220
Rated Torque L1 3 Nm 40 105 165 360 880 1100
4 Nm 45 130 230 480 880 1800
5 Nm 45 130 230 480 1100 1800
7 Nm 45 100 220 480 1100 1600
8 Nm 40 90 200 440 / /
10 Nm 30 75 175 360 770 1200
L2 12 Nm 40 105 165 360 880 1100
15 Nm 40 105 165 360 880 1100
20 Nm 45 130 230 480 1100 1800
25 Nm 45 130 230 480 1100 1800
28 Nm 45 130 230 480 1100 1800
30 Nm 40 105 165 360 880 1100
35 Nm 45 130 230 480 1100 1800
40 Nm 45 130 230 480 1100 1800
50 Nm 45 130 230 480 1100 1800
70 Nm 45 100 220 480 1100 1600
100 Nm 30 75 175 360 770 1200
Degree Of Protection   IP65
Operation Temprature ºC  – 10ºC to -90ºC
Weight L1 kg 1.25 3.75 8.5 16 28.5 49.3
L2 kg 1.75 5.1 12 21.5 40 62.5

Company Profile

Packaging & Shipping

1. Lead time: 7-10 working days as usual, 20 working days in busy season, it will be based on the detailed order quantity;
2. Delivery: DHL/ UPS/ FEDEX/ EMS/ TNT

Shipping Cost:

Estimated freight per unit.



To be negotiated
Application: Motor, Machinery, Marine, Agricultural Machinery, Spring Machinery
Hardness: Hardened Tooth Surface
Installation: Vertical Type
Samples:
US$ 369/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

servo gearbox

Benefits of Using a Servo Gearbox for Precise Motion Control

Servo gearboxes offer several advantages when it comes to achieving precise motion control in various applications:

1. Accuracy: Servo gearboxes provide exceptional accuracy in speed and position control, making them suitable for applications that require tight tolerances and precise movements.

2. Low Backlash: These gearboxes are designed to minimize backlash, which is essential for eliminating lost motion and ensuring accurate positioning.

3. High Torque Density: Servo gearboxes offer a high torque-to-size ratio, allowing them to handle significant loads while maintaining a compact footprint.

4. Dynamic Performance: They excel in dynamic performance, enabling rapid changes in speed and direction with minimal overshoot or settling time.

5. Responsiveness: Servo gearboxes respond quickly to control signals, making them ideal for applications that require rapid adjustments and changes in direction.

6. Smooth Operation: These gearboxes provide smooth and precise movement, critical for applications like robotics, where jerky or uneven motion can lead to inaccuracies or damage.

7. Reduces Maintenance: The accuracy and durability of servo gearboxes can reduce wear and tear on other components, leading to lower maintenance requirements.

8. Improved Efservo gearbox

Contribution of Servo Gearboxes to Energy Efficiency in Automated Systems

Servo gearboxes play a crucial role in enhancing energy efficiency in various automated systems by addressing several key aspects:

1. Precise Control: Servo gearboxes enable precise and accurate control over motion, allowing automated systems to perform tasks with minimal wastage of energy. Precise positioning reduces the need for unnecessary movements and adjustments.

2. Variable Speed Operation: Servo gearboxes offer the flexibility to operate at different speeds based on the application’s requirements. This capability ensures that the system uses only the necessary amount of energy for a given task, avoiding excessive power consumption.

3. Reduced Inertia: Servo gearboxes are designed to minimize inertia, which is the resistance to changes in motion. Lower inertia results in quicker response times and less energy required to accelerate or decelerate moving parts.

4. Regenerative Braking: Some servo systems are equipped with regenerative braking mechanisms. During deceleration or braking, energy generated is fed back into the system or stored for later use, reducing energy wastage.

5. Dynamic Load Management: Servo gearboxes can adapt to varying load conditions in real-time. They adjust torque and speed based on the load, optimizing energy usage and preventing overconsumption of power.

6. Reduced Heat Generation: Efficient servo gearboxes produce less heat during operation, leading to lower energy losses. This reduction in heat generation contributes to overall energy efficiency and extends the lifespan of components.

7. Smart Control Algorithms: Modern servo systems incorporate intelligent control algorithms that optimize the use of energy. These algorithms manage power distribution, minimize idle time, and synchronize movements for optimal efficiency.

8. Energy Recovery: In certain applications, servo gearboxes can capture and reuse energy that would otherwise be dissipated as heat. This energy recovery further contributes to the overall energy efficiency of the system.

9. Low Friction Designs: Servo gearboxes often incorporate low-friction components and efficient lubrication systems to minimize energy losses due to friction.

10. Matched Components: Properly matched servo gearbox and motor combinations ensure that the system operates at its peak efficiency point, minimizing energy consumption.

By incorporating these energy-saving features and capabilities, servo gearboxes enhance the energy efficiency of automated systems, making them more environmentally friendly and cost-effective over the long term.

ficiency: Servo gearboxes offer high efficiency in power transmission, contributing to energy savings and minimizing heat generation.

9. Customization: They can be tailored to specific application needs, including factors like reduction ratios, mounting options, and feedback compatibility.

10. Versatility: Servo gearboxes find application in various industries, including robotics, CNC machining, medical equipment, and automation.

Overall, the benefits of using a servo gearbox for precise motion control make them an essential component in applications that demand accuracy, responsiveness, and reliable performanservo gearbox

Compatibility of Servo Gearbox with a Specific Motor

The compatibility between a servo gearbox and a specific motor depends on several key factors:

1. Mounting Configuration: The mounting interface of the servo gearbox and motor must be compatible. This includes the type of coupling, flange size, and bolt pattern. Proper alignment ensures efficient power transmission and minimizes mechanical stress.

2. Shaft Diameter and Keyway: The diameter and keyway of the motor shaft must match the input shaft of the servo gearbox. A precise fit prevents slippage and ensures accurate torque transmission.

3. Torque and Speed Ratings: The torque and speed requirements of the application should align with the torque and speed ratings of both the motor and gearbox. Oversizing or undersizing either component can lead to inefficient operation and premature wear.

4. Inertia Matching: Inertia matching between the motor and gearbox helps prevent resonance and oscillations in the system. An appropriate inertia match ensures smooth and precise motion control.

5. Backlash and Stiffness: The gearbox’s backlash (play in the gears) and stiffness characteristics should match the application’s requirements. Low backlash and high stiffness are crucial for accurate positioning tasks.

6. Efficiency and Heat Dissipation: The combined efficiency of the motor and gearbox affects the overall system efficiency. Inadequate efficiency can lead to energy losses and excessive heat generation.

7. Service Life and Maintenance: Compatibility also involves considering the expected service life and maintenance requirements. A well-matched motor-gearbox combination enhances the durability and reliability of the motion control system.

8. Control and Feedback: The control system’s capabilities, such as closed-loop control and feedback devices, play a role in determining compatibility. The motor and gearbox should provide the necessary interfaces for effective integration into the control system.

Manufacturers and engineers often provide guidelines and compatibility charts to assist in selecting the right servo gearbox for a specific motor. Considering these factors ensures optimal performance, efficiency, and longevity of the motion control system.

ce.

China Best Sales PA Series One Stage Planetary Gearboxes for Servo Motor   gearbox design		China Best Sales PA Series One Stage Planetary Gearboxes for Servo Motor   gearbox design
editor by CX 2023-08-29